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Let S be a bounded region in RY and let #={S,}™ | be a partition of S into
a finite number of closed subsets having piecewise C? boundaries of finite
(N ~ 1)-dimensional measure. Let 7: § — S be piecewise C? on £ and expanding
in the sense that there exists 0<o<1 such that for any i=1,2,..m,
|DT, ' <o, where DT ! is the derivative matrix of 7! and ||| is the
Euclidean matrix norm. We prove that for some classes of such mappings, for
example, Jablonski transformations or convexity-preserving transformations,
the number of crossing points constitutes a bound for the number of ergodic
absolutely continuous t-invariant mecasures. We give examples showing that in
general the simple bound of one-dimensional dynamics cannot be generalized to
higher dimensions. In fact, we show that it is possible to construct piecewise
expanding C? transformations on a fixed partition with a finite number of
elements but which have an arbitrarily large number of ergodic, absolutely
continuous invariant measures.

KEY WORDS: Piccewise (2 transformation on R¥; bound for number of
crgodic, absolutely continuous invariant measures, crossing points of partition.

1. INTRODUCTION
Let S be a bounded region in RY and let = {S,}"_, be a partition of S

i=1
into a finite number of closed subsets having piecewise C? boundaries of
finite (N — 1)-dimensional measure. Let 7: S — S be piecewise C* on # and
expanding in the sense that there exists 0 <o <1 such that for any
i=1,2,.,m, |DT,; '| <o, where DT, ' is the derivative matrix of T,' and
-1} is the Euclidean matrix norm. Then, under general conditions,‘'? it can
be shown that t has an absolutely continuous invariant measure {acim).

The result in ref. 1 is a generalization of results proved in refs. 6, 8, and 17.
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In this note, we investigate the problem of bounding the number of
acim’s for N-dimensional transformations. In general, “dynamical systems...
have a large set of invariant measure!'®.” For example, in point transfor-
mation models for cellular automata, it is possible to have many acim’s.'®’
Related to the problem of the number of acim’s is the question of the
support of invariant densities. Knowing that the support has interior is
important in our approach,

For one-dimensional transformations t:/—~ /[, [I={0,1], it is well
known that the number of discontinuities of 7'(x) provides an upper bound
for the number of independent acim’s.'"’ This result has been improved in
refs. 2-5. The key to all these bounds lies in the fact that invariant densities
for piecewise C? expanding transformations are of bounded variation. In
one dimension, a density of bounded variation is bounded and it can be
proved that its support consists of a union of closed intervals. A simple
argument then shows that each point of discontinuity of t" must lie in the
largest closed interval-- -hence the upper bound on the number of acim’s. In
higher dimensions, however, the situation is not so simple. The much more
complex geometrical setting and the complicated form of the definition of
bounded variation'”’ do not permit an easy generalization of the one-
dimensional result. For example, in two dimensions, the variation in one
direction is integrated in the other direction. It is this integration which
allows a function of bounded variation in R to be unbounded and its
support to be devoid of interior.

In this note, we obtain a general bound on the number of independent
acim’s for Jablonski transformations which are sufficiently expansive. This
is accomplished by generalizing to N dimensions a result of ref. 6, based on
a lemma in ref. 18, which allows us to prove that the support of every
invariant density is open modulo a set of A-measure zero, where 4 is an
N-dimensional Lebesgue measure, without explicitly using the definition of
bounded variation in R".

In Section 2 we establish the main results of this note and in Section 3
we present a number of higher-dimensional examples. In Section 4 we show
by means of an example that it is possible to construct piecewise expanding
C? transformations on a fixed partition with a finite number of elements
but which have arbitrarily large number of ergodic, absolutely continuous
invariant measures.

2. MAIN RESULT

Let S be a bounded region in R" and let © be a transformation from
S into S. We assume that 7 is piecewise C? and expanding, ie.:
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(a) There exists a partition # = {S,}7_, of S, where m is a positive
integer, and each S; is a bounded closed domain having a piecewise C?
boundary of finite (N — 1)-dimensional measure.

(b) t,=15 is a C? 1-1 transformation from int(S;) onto its image
and can be extended as a C? transformation on S;, i=1, 2,..., m.

(c) There exists 0 <o <1 such that for any i=1, 2,.., m,
1Dz, 'l <o (1)

where Dt ! is the derivative matrix of z; ' and ||| is the Euclidean matrix
norm.

We remark that condition (1) implies, for 7, '(x), ;7 '(y) close
enough,

p(ry '(x), 1, (») <oplx, y)

where x, ye R, =1(int(S,)) and p is the Euclidean metric in R".

By 4 we denote the Lebesgue measure on S, and by J(z) the absolute
value of the Jacobian of 7. J(t, x) is the value of J(t) at x.

The main tool used in the proofs of the existence of an acim for
piecewise C? and expanding transformations is the multidimensional
notion of variation defined using derivatives in the distributional scnse!”":

V)= 107l =sup { [/ div(z) di g = (g1 £4)€ CH(RY. RY)

and [g(x)| <1, xe RN}

where f€ L,(R") has bounded support, Df denotes the gradient of / in the
distributional sense, and C(R", R") is the space of continuously differen-
tiable functions from R” into R" having compact support.

In the sequel we shall consider the Banach space (ref. 7, Remark 1.12)

BV(S)={feL\(S):V(f)< 40}

with the norm || fl v = Il fll ., + V(S)-

By a regular cone in R we mean a cone whose base is an (N—1)-
dimensional disk B and such that the central ray L joining the vertex to the
center of the disk B is perpendicular to the disk. We define the angle
subtended at the vertex of a regular cone to be angle between L and any
line joining the vertex to a point on the boundary of B.

For any S;e %, i=1, 2,.., m, we define a(S;) as follows: at any singular
point x€dS; we construct the largest possible regular cone having its
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vertex at x and which lies completely in S;. Let (x} denote the angle
subtended at the vertex of this cone. Then define

S(S;) =min 0(x)

where x is a singular point in 4S,. Let a(S;)=n/2 + f(S,) and

a(S;) = |cos a(S;)|
We define
a=min{a(S,):i=1,.,m}

We now state the main result of ref. 10, which will be needed in the
sequel.

Theorem 1. Let ©:5— S, S< R, be a piecewise C?, expanding
transformation. If o(1 + 1/a) < I, then t admits an absolutely continuous
invariant measure with density /e BV(S).

The bounded variation inequalitics proved in ref. 10 allow us to invoke
the lonescu Tulcea and Marinescu theorem,®” which in particular says
that the asymptotic g-algebra U, (t) of t is finite (1 —a.e.) or, in other
words, that the number of ergodic acim’s is finite. We recall that
N, (1)=,50T "(B), where B is the Borel g-algebra of subsets of S.

Theorem 1 is a generalization of results in refs. 6, 8, and 17. In refs. 8
and 17 the partitions are assumed to be rectangular and in ref. 17 the trans-
formations are such that the ith component is a function only of the ith
variable. The results in ref. 6 apply only to dimension 2, but in the special
case when the transformation is piecewise analytic, o <1 is sufficient to
establish the existence of an acim. For all the foregoing resuits, the densities
are functions of bounded variation and the Ionescu Tulcea and Marinescu
theorem applies.

Below we shall prove that the support of the density of any acim is
open J-a.e. This will be used to provide an explicit bound for the number
of ergodic acim’s.

We will now prove a result which is a direct extension of Theorem 2
in ref. 6 to N dimensions. First we state Lemma 1, which is an extension of
Lemma 7 from ref. 6, and which in turn is based on ref. 18. For complete-
ness, and since the relevant results of ref. 6 have not been published, we
include the proof, which goes through with only minor changes.

Lemma 1. Let ©: S— S, Sc R”, be a piecewise C? and expanding
transformation and let f be the density of the acim g, where
feL,=L,S, ) and p>1. Let g=p/(p—1). Let 2={Q,,..0uy} be a
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partition of S into bounded closed domains having piecewise C*-bound-
aries of finite (N — 1)-dimensional measure. We define

n

2=\ M) ={Qunt Q)" - nTTHQ,): @€ 2}

k=0
Then:
(a) There exists « > 1 such that
diam(Q) < diam(S) o™ "
for any Q € 2",

(b) For any >0, there exists a positive integer K(f) such that for
any k> K(B) and any n>0 we can find a collection of sets 4%, , = 2"+
satisfying the following conditions:

(i) t"(B)e 2™, for any Be 4B, ,.
AB) (B B
(ii) (B) (rn( ) Sﬁ/l( )
AB)  Az"(B)) A(B)
for any Be %4, , and any measurable Bc B,
(i) w(S U %) <B.
Remark 1. If f'e BV(S), then fe L, with p=N/(N—1) (sce ref. 7).

Proof. We can assume that the partition ¢ is finer then the defining
partition 2. Then (a) is obviously satisfied for any 1 <a < 1/a.

Now we will prove (b). Let k>0 and n>0. For Qe ¥ and 0< /<,
we define

S(n, k, j, Q)= {xe S:dist(t* */(x), d(x(Q))) < diam(S)a " M}
and

S k)= U S(n, k, j, O
ge? =0

Then we have

WS k)< T Y w(Snk j, 0))

Qe ;=0

Z Z J‘ T sink. j.0) 42

Qes j=0"5

< ) Z 1112, (A(S(n, &, j, ©)))"

Qe j=0

<Ifl, ¥ 3 (Codiam(S)a-t+ s

Qed j=0

< ”f“[_p Ca_k/q(al/’l/(al/q__ l))
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where C, are constants dependent on d(1(Q)), and C=
2oen (Cydiam(8))'~.

For any f# >0, we can find K(f) such that for k > K(f), u(S(n, k); < p.
For k> K(f) and rn >0, we define

Boi={Be2" ) forall 1<j<n, t/(B)es”* 1}

If Qe9™+*\B, ., then there exists a smallest j, 1<j<n, such that
Q)¢ 2" ). Then v/ '(Q)e2”+* 7+ which implies that there
exist 0,2 and Q,e2”** 7 such that v/ (Q)=Q,nt YQ,) or
(Q)=1(Q,)NQ, and /(Q)# Q,. Since diam(t/Q) < (diam(S)a **+" 1),
Q< S, k).

We have proved that p(S\U %, ) < u(S(n, k)) < for k= K(B), n>0.
Thus, (i) and (iii) are proved. We will now prove (ii).

Fix Be#, . Xoe B, and Bc B, and 0<j<n—1,

etk 'E)zj J(z, x) di(x)

(R
J(z, x)

=J{z, t/(xy)}) oy J(T, ‘ri(xn“

di{x)

On the other hand, we have for x, yet/B,

J(t, x) 1
log (J(r, y))‘ S5 g e e

<L |x— y| <o diam(S)a “+* P
where L is the Lipschitz constant for J(z). Hence, we have
'I Mt/*'B) M2/ B)
*8 (A(r” ‘B)/ A(r-"B))
- !log (Lus) [J(, x)/J(z, T/(xo))] dl(x)/l(Ti§)>'
.‘.T’(B) [J(z, x)/ Iz, Tj(x())] dA(x) A(‘CJB)

= e (36:35)

M"B) /1(_5) s
l“’g (WB)/ A(B))‘ S Cae

<Cyo 1tk -

By induction,
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Hence,

a~k

A(B) A(r"(B))

IME) Az"B))| _ . M(B)
ST AB)

where C, and C, are constants independent of k, n, B, and B. Since we can
choose K(f) such that C,a5® < g, (ii) is proved. |

Theorem 2. Let 7 satisfy the assumptions of Lemma 1 and let the
asymptotic g-algebra U () of 7 be finite i-a.e. Then:

(a) The atoms of U () of T are open sets 1-a.c.

(b) For any A€ (), there exist pe N and atoms A,,.., 4, €
A (r), pairwise disjoint, such that A=4,, 71(4,.,)cA4,, A—ae
(i=1,2,.,p—1),and 1(4,_()S 4, .—ae.

Proof. (The following proof is almost directly from ref. 6. Since this
result has not been published, we repeat the proof here.)

First we prove (b): Let 4 be an atom of A (7), A=1 "(B,), B,€B,
n=1,2,., 4(A)>0. The set A=y, Unsx 7 "(B,..) is also an atom of
A, (1) and 1(A4) < A4. Since the number of atoms of U _(z) is finite (i-a.c.),
there exists a positive integer p such that t”(4)< A4, A-ae.

Now we prove (a): Let A be an atom of U (7) and "(4) < 4, A-ae.
For B=u(A)2>0, let us choose k=K(f) and B, , satisfying Lemma 1.
Let R,=) B, and R* =3, U, R,,. By (iii) of Lemma I, we have

H(S\R*) < fp=pu(A)/2 (2)

o-algebras A, , ., generated by partitions 2"*% n=0,1,., form an
increasing sequence converging to the Borel s-algebra 8. Thus,

n]i“:lb E(XS\A")InJrk)(x):XS\A(x)’ A-ae.

By (2), there exists a point xo€ R* N A such that

"hnl) E(x s\ al Wy 44 )x0)=0 (3)
Since x, € R*, there exists an increasing sequence of positive integers n; and
a sequence of sets B, €8, ,,, {=1, 2,.., such that x,€ B,. By (3), we have

_AB,\A)
e MBy

822/62/3-4-14
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and by (ii) of Lemma 1
A" (B,\A))

im0
By (i) of Lemma 1
t"?(B,)e 2%
for any i =1, 2,.., and since 2'*’ is finite, there exists a set J € 2’ such that

g=1""(B,)
for natural numbers i from an infinite set /< N. Thus,

HO\A) < lim A(\e""(4)) =0

— 1)
el

and 0 < 4 -ae.
The set § is open J-ae., so t "(z"(J)) is also open J-a.c., for any n > 1
(7 is a piecewise diffeomorphism). Thus, the set

w= 1)1 "(z"(0))

nz0

is open A-a.e. Moreover, We ¥ (1), W< A4 J-ae., and since A is an atom
of A (r), W=A i-ae. Hence 4 is open i-ae. |

Corollary 1. Let t satisfy the assumptions of Lemma ! and let
A (1) be finite 1-a.e. Let f be the density of an ergodic acim. Then the
support of fis an open set A-a.c.

Proof. Immediate consequence of Theorem 2. §

Precisely as in ref. 6, we can prove:

Theorem 3. Let 7 satisfy the assumptions of Lemmal and let
A (t) be finite A-a.e. Let u be an acim for 7. Then:

(@) If p(U.sot™(U))=u(S) for any open set Uc S, then 7 is
ergodic. ‘
(b) If u(Unso t*"(U)) = u(S) for any open set U< S and any ke N,
then 7 is exact.

(c) If (t, u) is weakly mixing, then its natural extension is isomorphic
to a Bernoulli shift.
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We can now establish bounds on the number of ergodic z-invariant
absolutely continuous measures for the higher-dimensional Jablonski trans-
formations.

Let S=/Y=[0,1]". We assume that any S,e?, i=1..,m, is a
rectangle. A transformation t: I” — I" is called a Jablonski transformation
if it is piecewise C? and expanding, given by the formulas

T(-x-l 3000y xN) = ((pli(xl),"" (pni(xn))

for (xy,.., xN)ES, i=1,., m.

Definition 1. We say that a point x belongs to a set X with respect
to the measure A, and we write xe X (w.r.t. 1) if and only if there exists
£>0 such that A(B(x, £)n X)=A(B(x, ¢)), where B(x, ¢) is the ball with
center x and radius &.

Definition 2. We define a function n: for any xe S
n(x)= {number of S, such that xe S;}

We then define the crossing points to be local strict maxima of the function
n. The set of crossing points will be denoted by €.

For example, if 7 is a Jabtonski transformation, then € is the set of
vertices of elements of # which lie in the interior of S.

Definition 3. For a Jablonski transformation, we define a number
M, related to the geometry of the partition #. For any fixed -e R, let
H' |(z) denote the (N — 1)-dimensional hyperplane given by the equation
x;=z,j=1,2,.., N. Let

My =max max {number of S,such that H\ (z) nInt(S,)# &}

zeR 1<j<N

Theorem 4. Let 7: IV - I be a Jablonski transformation and let
A=inf{J(r, x): xe S}

If A/M, > 1, then the number of ergodic, absolutely continuous z-invariant
measures is at most equal to the number of crossing point, #@.

Proof. Let pu be an ergodic measure of . By Lemma 2 we can find an
open set B equal A-a.e. to the support of u. Let 4, be a rectangular non-
empty subset of B lying completely in one of the domains §S;, i =1,..., m. We
proceed inductively: if 4, is already defined, we define 4,,, to be the
intersection of 7(A4,) with sets S;, i=1,..., m, which has maximal A measure.
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Then, if 7(A4y), 7(A4;),..., 7(4,) do not include a crossing point in their
interiors, we have

MA )>—A—/1(A )>(—A—)"+=2(A )
n+1 /MN nl = MN i}

Since A/M > 1, we have A(4,,,)— o, as n— oo, which is impossible.
Thus some image t%(A4,) contains a crossing point in its interior, which
implies that this crossing point belongs to the supp u w.r.t. 4. Since the

supports of ergodic acim’s are mutually disjoint A-a.c., the conclusion of the
theorem follows. §

Note that M, = 1. Hence, in dimension 1, inf|{z’| > 1 implies that the
number of ergodic acim’s is at most the number of discontinuity points.
This is a well-known result.!"’

The following two corollaries may sometimes be used to improve the
estimate of Theorem 4.

Definition 4. For a Jablonski transformation, we define a number
K, related not only to the geometry of the partition #, but also to the
structure of the transformation 7. Let

Ky=max max max {number of S,such that

zeR ISjsNI<ksm

H(j\;, 1‘(Z) N T(Sk) N Int(S,~) # g}

Corollary 2. If A/K, > 1, then the number of ergodic, absolutely
continuous t-invariant measures is at most equal to the number of crossing
points, #(.

Proof. The same as that of Theorem 4. ||
Remark. Since A >0 ", it is enough to assume ¢"K, < 1.

Remark. In the proofs of Theorem 4 and Corollary 2, we only used
the fact that the elements of the partition # are rectangles and that the
7-image of a rectangle is again a rectangle (with faces parallel to the
coordinate hyperplanes.) With this in mind we can generalize Theorem 4
even further.

Definition 5. Let V be any open convex subset of S. We define a
number C,, as follows:

Cy=max max max {number ofS;such that Vnt(S.)nInt(S,)# I}

¥V 1<j<Nli<ksm
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Corollary 3. Assume that the clements of 2 are convex and the
transformation 7 maps convex sets into convex sets. If A/Cy > 1, then the
number of ergodic, absolutely continuous t-invariant measures is at most
equal to the number of crossing points, #¢.

Proof. The same as that of Theorem 4. ||

Note that S itself does not have to be convex, but since each of the
elements of 2 is convex, the inner boundaries of these elements must be
straight lines.

Definition 6. The crossing points ¢,, c,e® belong to the same
dependent class if, for any &> 0,

Mz*(B(c,, &)) nT'(B(c,, £))) >0
where k, I20.

Corollary 4. Under the assumptions of Theorem 4, Corollary 2, or
Corollary 3, the number of ergodic, absolutely continuous t-invariant
measures is at most equal to the minimal number of dependent classes into
which the crossing points can be divided.

Proof. Let ¢, ¢, be in the same dependent class. We can assume that
there are ergodic acim’s u,, p, such that ¢, esupp p, wrt. A and
¢, € supp p, w.r.t. 4. (Otherwise, at least one of thesc points is unimportant
for the estimate of the number of ergodic acim’s given in Theorem 4.). We
can choose & > 0 1o satisfy

Blc,,&)csupp u,, A-ae.

and
B(c,, e} supp u,, A-ae.

The dependence of ¢, and ¢, implies

Mz*(supp p;) N 2'(supp p,)) >0
for some k, 120,50 u;=u,. |

Below we give another method of estimating the number of ergodic
acim’s. The result may be applied in a general situation, but does not give
an explicit bound on the number of ergodic acim’s.

Let 0,(2)=U/L,d(xr "(S)), n=0,1,., and let P*={),.,,”,
d(t"(S;)) be the union of all the boundaries of the forward images of
elements of the defining partition.
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Theorem 5. Let 1:S— S satisfy the conclusions of Theorem 1,
where f is the density of an ergodic measure u. Let 4 be any set such that
noT "(A) is dense in S and AN P*= 5. Then there exists an aec 4
such that a e supp(f) (w.r.t. 1) and the number of ergodic acim’s is at most
the cardinality of A.

Remark. Theorem4 and Corollary 2 state that the preimages of
crossing points are dense in S.

Proof. By Theorem 2, there exists an open set B such that
B=supp(f) A-ae. Since |J,.,7 "(A) is dense in S, there exists an ae 4
and a smallest integer k such that 1 “(a)e B. Since a¢ P*,
T Xa)¢ 0(P)Ud(P)U - UD, (#), and thus there exists 0>0
such that B(t “(a),6)c B and 1}y, «,,;, is a diffcomorphism. Thus
t*(B(r *(a),¥) is an open neighborhood of a and t¥(B(r *(a),d))<
supp(f) A-ae., ic., aesupp(f) (wrt. ). Since the supports of different
ergodic acim’s are disjoint A-a.e., the last conclusion of the theorem
follows. §

Remarks. (1) Given that the support of the density f of an acim is
an open set A-a.e., docs this shed any light on whether f'is bounded above
and/or below on its support?

(2) Random higher-dimensional point transformations can be
treated in a way that is analogous to ref 21. For example, we can show
that the minimum of all the upper bounds for the number of ergodic acim’s
for the component transformations is an upper bound for the number of
ergodic acim’s for the random map.

3. EXAMPLES OF JABLONSKI TRANSFORMATIONS

(i) LetS=[-2,2]x[-3,3]and #={S,, S;, S3, S,}, where S; is
the intersection of S with the ith quadrant of the plane (Fig. 1). Define
T,=T45 by (x,y)—>(—4/3y+2,3/2x), ie, v, maps S; linearly onto
S,uS,. Let 7, map S, onto S, U S, in the same way, and let 1;, 1,4
map S; and S,, respectively, onto S,uU S, in the same manner. Then
A=K,=2. It is obvious that t admits two ergodic acim’s. This shows that
the condition A/K, > 1 is necessary in Corollary 2 and also shows that in
general the number of crossing points # @ is not a bound for the number
of ergodic acim’s.

(ii) LetS=[—1,1]x[—1,1]and 2= {S,, S,, S, S,}, where S, is
the intersection of S with the ith quadrant of the plane. We define 7, =1,
by

Tx, y) = (ax —sgn(x) b, ay —sgn(y) b)
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If 1<a<2and (a—1)<b<1, then 7 is a piecewise expanding Jablonski
transformation and t(S) < S. For values in small intervals around a=1.18
and b = 0.85, using the computer we obtained strong evidence'* that 7 has
four ergodic acim’s. The computer images of the supports of these measures
are shown on Figs. 2-5. This gives evidence that # % - 1 (which might be
a resonable generalization of the one-dimensional result) is not, in general,
a bound for number of acim’s.

(iii) In ref. 16, we model an N-site cellular automaton by an N-dimen-
sional point transformation. Let L be a lattice of cells having arbitrary
shape and dimension. The values of the N cells are described by N real
variables (x,,.., xy)eI", I=[0, 1]. The evolution of values of the N-cell
system is described by the point transformation t. To define 7, we consider
a partition of 7V into 2" subsets:

1 =l xI,x - xI

iy iy Y

where each 7, is one of the two intervals which partition 7, namely [0, 1/2)
or [1/2,1]. To define 7, it suffices to define the ith component 7. Fix
N — 1t indices: ji, Ji (s Jit 1> Jiv2s Jn. €ach taking a value in the set

(0,3)
S2 S1
{~-2,0) (0,0) (2,0}
S3 S4
(0,-3)

Fig. 1
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Fig. 2

Goéra et a/.
s = 1,18088
b = .85008
x = 19868
y = 78008

number of iterations:
28008

{0, 1}, where 0 represents the interval [0, 1/2) and 1 the interval [1/2,1].

On the set

-x L x [0, 1]x1;

Ji

1 depends only on x; and for any fixed

xi€l;,x€

jramee

UES}

.. .I
-
-

l. -l

Fig. 3

-xf

IN

xiq€l, X, 1€l; ., xyely

a = 1.10088
b = .85808
x = .28088
y = 38008

number of iterations!:
28008
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l a = 1,18888

‘ . b = 858088
x = 18688
y = 48880
. - number of iterations:
5 . B 20888
a ]
ma

Fig. 4

is a one-dimensional, piecewise smooth, expanding transformation, as
shown in Fig. 6.

In order to use the bound of Corollary 2, we need 4>2" '. Since
A>a M we require the transformation to satisfy < 2"V/2. Since there is
only one crossing point, T has a unique acim.

- AR a = 1,18668
- ) b = 85088
x = 10888
y = .50860
m ] number of iterations:
—— ¥ 28800

Fig. §
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(1) ~

0 .5 1 i

Fig. 6

4., EXAMPLE OF A GENERAL TRANSFORMATION

In this section we will construct two-dimensional piecewise expanding
C? transformations on a fixed finite partition, but which have an arbitrarily
large number of ergodic, absolutely continuous invariant measures.

Let S be a bounded closed region in R* with subregions S|, S,,.., 5,,..
Let S, and S, share a boundary segment which is a line L (Fig. 7). Let

Fig. 7
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M =2k+1 be an arbitrary odd positive integer. Let / be the length of L
and let us mark off points p, at distances il/(M+ 1), 1<i< M, from an
endpoint of L. We construct a line segment centered at p, (in L) of length

where p > 3 will be chosen later. We now construct isosceles right triangles
T 1<i<M, j=1,2, of sides §, d, 2'/%5, as shown in Fig. 8.
To define 7, = 1|5, we proceed as follows:

Step 1: Reflect S, about the perpendicular line to L at p, , , (Fig. 9).
This maps the base of T!" to the base of T}, , , and flips the triangles.
Note that for i=k + 1 the base maps to itself, i.e., is invariant.

Step 2: Let C, be vertices of the reflected T, at the right angle.
Perform a homothetic dilation by \/5 at C; followed by a 45° rotation as
shown in Fig. 10. Note that C;B; is the image of the base of triangle
T(All)+l -

Step 3: Extend 1, defined above on triangles 7" to a neighborhood
of L in §,. That is, we define 7, between the two adjacent triangles so that
1, is expanding. This can be done as suggested in Fig, 11, provided the
spacing between adjacent triangles is sufficiently large in relation to 4, ie.,

!
|
| S
I
l

2
Py Pyt Prs2

- - L

|
ri“... T;“ e 2D ey

| k+1 k+2 T "2k+l
l
| S
I
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|
Ck+1
L

{1)

flip Tk+1
(1)
of Tk+1

Fig. 9

provided 4 is sufficiently small. Choose p accordingly. This defines 7, within

a distance d of L.

Step 4: Extend 1, to the remainder of S, so that it is expanding and

C’on S,.

By symmetry, we may repeat the same construction for S,, i.c., repeat
the construction for S, symmetrically with respect to L to get 7, within a

distance d of L, and extend as in Step 4.

¢ Py
L
B
Ay
I:
By
¢ Py
L
Al

Fig. 10
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—_—— ...~\ //“—\
A
r \ 4
\
\
\
\
AY
N e am- L
S
N
W
o ony I~
u""'" \\ 4
(1) \ 4 (1)
Tl(Tiﬂ.) \ PR 1:1(T.l }
\ rd
AN ~”~
\~‘— _————""/
tl((xlx € Sl’ plx,L) <8 })
Fig. 11
Let

— 7 (2 (1) (2)
E=TVuT®uTY,, ,OT®. , ., 1

n
N
<

Define 7 on the rest of S so that

M
S)nl) Ei=g for j>2

i=1
Then ©(E;)=E,=t '(E,), for 1 <i<M, so each E, is an invariant set of
positive Lebesgue measure, and hence supports an ergodic, absolutely con-
tinuous invariant measure. Since there are k+ 1 distinct E, and k is
arbitrary, we can have an arbitrarily large number of ergodic, absolutely
continuous invariant measures.
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