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Let S be a bounded region in R N and let :~=  {S,},?'=~ be a partition of S into 
a finite number of closed subsets having piecewise C 2 boundaries of finite 
(N - 1 )-dimerrsional measure. Let z: S ~ S be piecewise C 2 on PP and expanding 
in the sense that there exists 0 < a < l  such that for any i= l ,2 , . . . ,m ,  
JIDTI ~11 <~ ,  where D T ,  1 is the derivative matrix of T, -t and tlll is the 
Euclidean matrix norm. We prove that for some classes of such mappings, for 
example, Jablonski transformations or convexity-preserving transformations, 
the number of crossing points constitutes a bound for the number of ergodic 
absolutely continuous ~-invariant measures. We give examples showing that in 
general the simple bound of one-dimensional dynamics cannot be generalized to 
higher dimensions, in fact, we show that it is possible to construct piecewise 
expanding C 2 transformations on a fixed partition with a finite number of 
elements but which have an arbitrarily large number of ergodic, absolutely 
continuous invariant measures. 

KEY W O R D S :  Piecewise C 2 transformation on RN; bound for number of 
ergodic, absolutely continuous invariant measures, crossing points of partition. 

1. I N T R O D U C T I O N  

Let S be a bounded region in R N and let o,o= {Si}j'= I be a partition of S 
into a finite number of closed subsets having piecewise C 2 boundaries of 
finite ( N -  1 )-dimensional measure. Let z: S ~  S be piecewise C 2 on ~ and 
expanding in the sense that there exists 0 < a < l  such that for any 
i =  1, 2 ..... m, HDT i '11 < a ,  where DTi  1 is the derivative matrix of Ti -1 and 
[1.1[ is the Euclidean matrix norm. Then, under general conditions, ~l~ it can 
be shown that ~ has an absolutely continuous invariant measure (acim). 
The result in ref. 1 is a generalization of results proved in refs. 6, 8, and 17. 
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In this note, we investigate the problem of bounding the number of 
acim's for N-dimensional transformations. In general, "dynamical systems... 
have a large set of invariant measuret~S~. '' For example, in point transfor- 
mation models for cellular automata, it is possible to have many acim's. ~'~ 
Related to the problem of the number of acim's is the question of the 
support of invariant densities. Knowing that the support has interior is 
important in our approach. 

For one-dimensional transformations z : l - , L  1 =  [0, 1], it is well 
known that the number of discontinuities of z'(x) provides an upper bound 
for the number of independent aeim's.~t~ This result has been improved in 
refs. 2-5. The key to all these bounds lies in the fact that invariant densities 
for piecewise C 2 expanding transformations are of bounded variation. In 
one dimension, a density of bounded variation is bounded and it can be 
proved that its support consists of a union of closed intervals. A simple 
argument then shows that each point of discontinuity of z' must lie in the 
largest closed interval---hence the upper bound on the number of acim's. In 
higher dimensions, however, the situation is not so simple. The much more 
complex geometrical setting and the complicated form of the definition of 
bounded variation ~ do not permit an easy generalization of the one- 
dimensional result. For example, in two dimensions, the variation in one 
direction is integrated in the other direction. It is this integration which 
allows a function of bounded variation in R u to be unbounded and its 
support to be devoid of interior. 

In this note, we obtain a general bound on the number of independent 
acim's for Jab~onski transformations which are sufficiently expansive. This 
is accomplished by generalizing to N dimensions a result of ref. 6, based on 
a lemma in ref. 18, which allows us to prove that the support of every 
invariant density is open modulo a set of 2-measure zero, where 2 is an 
N-dimensional Lebesgue measure, without explicitly using the definition of 
bounded variation in R u. 

In Section 2 we establish the main results of this note and in Section 3 
we present a number of higher-dimensional examples. In Section 4 we show 
by means of an example that it is possible to construct piecewise expanding 
C 2 transformations on a fixed partition with a finite number of elements 
but which have arbitrarily large number of ergodic, absolutely continuous 
invariant measures. 

2. MAIN RESULT 

Let S be a bounded region in R N and let z be a transformation from 
S into S. We assume that �9 is piecewise C z and expanding, i.e.: 
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S " of S, where m is a positive (a) There exists a partition ~ =  { i}i= 
integer, and each S~ is a bounded closed domain having a piecewise C 2 
boundary of finite ( N -  1 )-dimensional measure. 

(b) z~= rls ' is a C 2, 1-1 transformation from int(S;) onto its image 
and can be extended as a C 2 transformation on S;, i = 1, 2 ..... m. 

(c) There exists 0 < ~r < 1 such that for any i =  1, 2 ..... m, 

IlDr, 'II <~r (1) 

where Dr,- ) is the derivative matrix of r~ ~ and I[' II is the Euclidean matrix 
norm. 

We remark 
enough, 

that condition (1) implies, for ~{~(x), zi-~(y) close 

p(r ~ '(x), r ~ '(y)) < ap(x, y) 

where x, y e Rj = r(int(Sj)) and p is the Euclidean metric in R u. 
By 2 we denote the Lebesgue measure on S, and by J(r) the absolute 

value of the Jacobian of r. J(r, x) is the value of J(r) at x. 
The main tool used in the proofs of the existence of an acim for 

piecewise C 2 and expanding transformations is the multidimensional 
notion of variation defined using derivatives in the distributional sense~7~: 

V(.l') = [RN jllgfj] = sup { fRNf div(g)d2: g =  (g, ..... gN)e (',J~( R N. R N) 

and Ig(x)l ~< 1, .re R N} 

w h c r e f e  L~(R N) has bounded support, DJ'denotes the gradient of f i n  the 
distributional sense, and , N Co(R , R N) is the space of continuously differen- 
tiable functions from R N into R N having compact support. 

In the sequel we shall consider the Banach space (ref. 7, Remark 1.12) 

BV(S) = {.['e L,(S): V(f)  < +oo } 

with the norm [If[I By = Ilfll z., + V(f). 
By a regular cone in R ~r we mean a cone whose base is an ( N - 1 ) -  

dimensional disk B and such that the central ray L joining the vertex to the 
center of the disk B is perpendicular to the disk. We define the angle 
subtended at the vertex of a regular cone to be angle between L and any 
line joining the vertex to a point on the boundary of B. 

For any Sie :~', i = 1, 2 ..... m, we define a(Si) a s  follows: at any singular 
point x e&S~ we construct the largest possible regular cone having its 
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vertex at x and which lies completely in S .  Let O(x) denote the angle 
subtended at the vertex of this cone. Then define 

[l( S i) = min O( x ) 
X 

where x is a singular point in t3Si. Let ct(S~)= r~/2 + fl(SA and 

a(Si) = [cos ct(Si)l 

We define 

a=min{a(SA: i= 1 ..... m} 

We now state the main result of ref. 10, which will be needed in the 
sequel. 

Theorem 1. Let z : S ~ S ,  S c R  N, be a piecewise C 2, expanding 
transformation. If tr(! + l / a ) <  I, then z admits an absolutely continuous 
invariant measure with d e n s i t y f e  BV(S). 

The bounded variation inequalities proved in ref. t0 allow us to invoke 
the lonescu Tulcea and Marinescu theorem, ~2~ which in particular says 
that the asymptotic a-algebra ~lr,,(Q of z is finite (2 -a .e . )  or, in other 
words, that the number of ergodic acim's is finite. We recall that 
~l~,j(r) =/"),I>o z "(~), where ~ is the Borel o-algebra of subsets of S. 

Theorem l is a generalization of results in refs. 6, 8, and 17. In rcfs. 8 
and 17 the partitions are assumed to be rectangular and in ref. 17 the trans- 
formations are such that the ith component is a function only of the ith 
variable. The results in ref. 6 apply only to dimension 2, but in the special 
case when the transformation is piecewise analytic, a <1 is sufficient to 
establish the existence of an acim. For all the foregoing results, the densities 
are functions of bounded variation and the Ionescu Tulcea and Marinescu 
theorem applies. 

Below we shall prove that the support of the density of any acim is 
open 2-a.e. This will be used to provide an explicit bound for the number 
of ergodic acim's. 

We will now prove a result which is a direct extension of Theorem 2 
in ref. 6 to N dimensions. First we state Lemma 1, which is an extension of 
Lemma 7 from ref. 6, and which in turn is based on ref. 18. For complete- 
ness, and since the relevant results of ref. 6 have not been published, we 
include the proof, which goes through with only minor changes. 

L e m m a  1. Let z: S ~ S ,  S c R  u, be a piecewise C 2 and expanding 
transformation and let f be the density of the acim p, where 
f~Lp=Lp(S ,  2) and p > l .  Let q = p / ( p - 1 ) .  Let 3 = { Q ~  ..... QM} be a 
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partition of S into bounded closed domains having piecewise C2-bound- 
aries of finite ( N -  1 )-dimensional measure. We define 

~.(")= ~/ r -~(~)= {Qi0nT-i(Oi,)c~ - . .  n~-n(Qi.): aiE~} 
k = O  

Then: 

(a) There exists c~> 1 such that 

diam(Q) ~< diam(S) ~ -" 

for any Q E ~("). 

(b) For any/7 >0,  there exists a positive integer K(fl) such that for 
any k >>. K(fl) and any n >/0 we can find a collection of sets ~',.k ___.~t,+kl 
satisfying the following conditions: 

(i) ~"(B)~ ~ ~k), for any B ~ , , , k .  

(ii) ;.(B) ,~(,"(B)) ~/~(B__---q 
for any BeM,,,k and any measurable ~c B. 

(iii) #(s' ,u ~.,k)~</?. 

Remark 1. l f f ~  BV(S), then.)C'e Lp with p = N/(N- 1 ) (see ref. 7). 

ProoL We can assume that the partition ~ is finer then the defining 
partition ;2. Then (a) is obviously satisfied for any 1 < c~ < 1/a. 

Now we will prove (b). Let k > 0  and n>~0. For Q e ~  and 0~<.i~<n, 
we define 

S(n, k, j, Q) = {xe S: dist(zk+J(x), ~(z(Q))) ~<diam(S) ~ (k+,, /)t 
and 

S(n,k)= U 0 S(n,k,j,Q) 
Q~e) 1=0 

Then we have 
~t 

#(S(n, k))<~ ~ ~ #(S(n, k, j, Q)) 
Q ~  / =0  

Q c . ~  1=0 S 

<<- ~ k I[fll,..(2(S(n,k,j, Q)))~lq 
Qe ~ ./=0 

<<. tif[Ic, ~ ~ (Codiam(S) o~-(k+"-J)) '/q 
Q ~  .i=O 

I l f l l  L. C a  - k l<q~ tl<~l(<~ ~1<, _ 1 ) )  
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where C e are constants dependent on 0(z(Q)), and C =  
~ , ~  (Ce diam(S)) ~/q. 

For any [1>0, we can find K(fl) such that for k > K(fl), la(S(n, k)j <[L 
For k > K(fl) and n >/0, we define 

f ldn , ,  = {Be~ for all 1 <~.j<~n, rJ(B)e 'd "' ~a ~)} 

If Q'~ 0~(.+~)\,~.,~, then there exists a smallest .L l<~j<<.n, such that 
zj(Q)r j). Then z j l(Q)~.~(.+k j+~, which implies that there 
exist Q je .~  and Q2~.~ ("+k-j) such that zJ ~(Q)=Q~nz ~(Q2) or 
zJ(Q)=z(Q,)c~Q2 and ~J(Q):AQ2. Since diam(riQ)~<(diam(S)u (k +,, j~), 
Q~S(n,k). 

We have proved that #(S\U ~..k)<~ la(S(n, k))< fl for k ~> K{fl), n >~ 0. 
Thus, (i) and (iii) are proved. We will now prove (ii). 

Fix B~:~,,,~, x(,~ B, and B o B ,  and O~j<~n-I,  

,t(*/' '~)=~ J(~,x)d2(x) 
rql'l) 

. r J (~ ,  x )  
: J"' J,,,,,, aa ) 

On the other hand, wc have for x, y e  zJB, 

log \j(z, Y)J ~< =~sup{x ~1 ~ IJ(~, x ) -  J(z, Y)t 

<~ aNL I}x-- Ylt <<. aX diam(S) ct (~+k 

where L is the Lipschitz constant for J(z). Hence, we have 

l /.2(zj +`~)/2(zj~),~ 

Ilog {f,,,~, [J(z,x)/J(,, zJ(Xo))] d).(x)/).(z/a))[ 
1 \ j',,(~, [J(~, x)/S(~, ~J(Xo)] d~(x) f~(~Jn)/I 

= l o g \ ~ / [ ~ < C ,  ~ , -+*  i, 

By induction, 

log (2(*~/3)/2(J3)~ ] \ 2(z.B)/2(B)} I <~ C2~-k 
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Hence, 

where C~ and C2 are constants independent of k, n, B, and ~. Since we can 
choose K(/~) such that C2~-~a)</~,  (ii)is proved. 1 

T h e o r e m  2. Let ~ satisfy the assumptions of Lemma 1 and let the 
asymptotic a-algebra ~I~(z) of ~ be finite 2-a.e. Then: 

(a) The atoms of ~ ( ~ )  of ~ are open sets 2-a.e. 

(b) For any A e ~o~(z), there exist p ~ 1~ and atoms Ao,..., Ap_ ~ e 
9.I~(~), pairwise disjoint, such that A=Ao,  z(A~_z)c_Ag, 2 - a . e .  
( i = 1 , 2  ..... p -  l ), and r(Ap_ l ) _  A, 2 - a . e .  

Proof. (The following proof is almost directly from ref. 6. Since this 
result has not been published, we repeat the proof here.) 

First we prove (b): Let A be an atom of ~Ioo(~), A = r  "(B,,), B,,e~, 
n =  I, 2 ..... /~(A)>0. The set ,4= nk , r-"(B, ,+t)  is also an atom of 
~21~,~(~) and ,(A)___ ,4. Since the number of atoms of ~ , ( r ) i s  finite (2-a.c.), 
there exists a positive integer p such that "CP(A) ~ A, 2-a.e. 

Now we prove {a): Let A be an atom of ~l~,~(z) and z~'(A)~_A, 2-a.e. 
For [1=~(A)/2>0, let us choose k =  K([J) and ~3,,.k satisfying Lemma 1. 
Let R, = U ~3,,k and R * =  Ntgt U,~ t  Rnp' By (iii) of Lemma I, we have 

I~( S \  R* ) <~ [I = I~( A )/2 (2) 

a-algebras ~21,~ k, generated by partitions .~l,,+k~, n = 0 ,  I ..... form an 
increasing sequence converging to the Borel a-algebra ~3. Thus, 

lim E(Zs\Al~I,,+k)(x)=xs\A(x ), 2-a.e. 
n ~  fg.~ 

By (2), there exists a point Xo e R*c~ A such that 

lim E(Xs\A I~l,, +k)(xo) = 0 (3) 

Since Xo ~ R*, there exists an increasing sequence of positive integers t/i and 
a sequence of sets B,,,efB,,p.k, i =  1, 2 ..... such that xoeB,,. By (3), we have 

2(B,,\A) 
lim - -  = 0 

, . . . .  . ~ ( B . , )  

822/62/3-4-14 
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and by (ii) of Lemma ! 

By (i) of Lemma 1 

2(~","(B.,\A )) 
i im - 0 

, ~ ,  ;~(~","(B.,)) 

T n ' P ( B , , , ) ~  tkl 

for any i = !, 2 ..... and since ~(k, is finite, there exists a set (~ e y~k~ such that 

0 = ~",,'(B.,) 

for natural numbers i from an infinite set l c  I~. Thus, 

2(0\A ) ~< lira 2(O\Cn'(A )) = 0 
ie:l 

and ~ ~_ A ,,].ia.e. 
The set Q is open 2-a.e., so z "(z"(0.)) is also open ).-a.e., for any n ~> ! 

(r is a piecewise diffeomorphism). Thus, the set 

w= U �9 "(~"(0)) 
n>~O 

is open 2-a.e. Moreover, Weg.I~(~), Wc_A 2-a.e., and since A is an atom 
of 9.I~(z), W= A 2-a.e. Hence A is open ).-a.e. I 

C o r o l l a r y  1. Let r satisfy the assumptions of Lemma I and let 
9.loo(z) be finite 2-a.e. Let f be the density of an ergodic acim. Then the 
support of f is an open set 2-a.e. 

ProoL Immediate consequence of Theorem 2. I 

Precisely as in ref. 6, we can prove: 

T h e o r e m  3. Let z satisfy the assumptions of Lemma 1 
oA~(z) be finite 2-a.e. Let # be an acim for z. Then: 

(a) 
ergodic. 

(b) 

(c) 

and let 

If #(U,>~oC(U))=#(S) for any open set u c s ,  then r is 

If #(U,~>o rk ' (U))=  p(S) for any open set U c S and any k e N, 
then z is exact. 

If (z, #) is weakly mixing, then its natural extension is isomorphic 
to a Bernoulli shift. 
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We can now establish bounds on the number of ergodic 3-invariant 
absolutely continuous measures for the higher-dimensional Jabtonski trans- 
formations. 

Let s = I N =  [0, l ]  N. We assume that any S j E ~ ,  i =  1 ..... m, is a 
rectangle. A transformation 3: I"---, I" is called a Jablonski transformation 
if it is piecewise C 2 and expanding, given by the formulas 

r (x l  ..... xN) = (~o1~(x1),..., ~0,,(x,)) 

for (xl ,..., XN) ~ Si, i = 1 ..... m. 

D e f i n i t i o n  1. We say that a point x belongs to a set X with respect 
to the measure 2, and we write x ~ X (w.r.t. 2) if and only if there exists 
e > 0  such that 2(B(x, e ) n X ) =  2(B(x, e)), where B(x, ~) is the ball with 
center x and radius e. 

D e f i n i t i o n  2. We define a function q: for any x ~ S  

q (x )=  {number of S~ such that x ~ S ~ }  

We then define the crossing points to be local strict maxima of the function 
r/. The set of crossing points will be denoted by E. 

For example, if 3 is a Jabtonski transformation, then ~ is the set of 
vertices of elements of .~ which lie in the interior of S. 

D e f i n i t i o n  3. For a Jabtonski transformation, we define a number 
MN related to the geometry of the partition :r For any fixed z e  R, let 
Ht'~ (z) denote the ( N -  l)-dimensional hyperplane given by the equation N I 

xj = z, j = 1, 2 ..... N. Let 

MN = max max {number of Si such that H~  )_ l(z) c~ Int(Si) # ,~} 
z~.F~ I~]<<.N 

T h e o r e m  4. Let r: I N ~ I u be a JabMnski transformation and let 

A = inf{J(3, x): x ~ S} 

If A / M N  > 1, then the number of ergodic, absolutely continuous 3-invariant 
measures is at most equal to the number of crossing point, # (L  

ProoL Let/~ be an ergodic measure of 3. By Lemma 2 we can find an 
open set B equal 2-a.e. to the support of/~. Let A o be a rectangular non- 
empty subset of B lying completely in one of the domains Sj, i = 1 ..... m. We 
proceed inductively: if A,, is already defined, we define A , + t  to be the 
intersection of z(A,,) with sets Si, i = 1 ..... m, which has maximal 2 measure. 
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Then, if ~(A0), z(A1) ..... z(A,) do not include a crossing point in their 
interiors, we have 

[ A V '+t 

Since A/MN> 1, we have 2 ( A , + , ) ~  oo, as n ~  oo, which is impossible. 
Thus some image zk(Ao) contains a crossing point in its interior, which 
implies that this crossing point belongs to the supp/~ w.r.t. 2. Since the 
supports of ergodic acim's are mutually disjoint 2-a.e., the conclusion of the 
theorem follows. I 

Note that MI = 1. Hence, in dimension 1, infWI > 1 implies that the 
number of ergodic acim's is at most the number of discontinuity points. 
This is a well-known resultJ ~j 

The following two corollaries may sometimes be used to improve the 
estimate of Theorem 4. 

D e f i n i t i o n  4. For a Jabtonski transformation, we define a number 
K N related not only to the geometry of the partition Y~, but also to the 
structure of the transformation r. Let 

KN= max max max {number of Sisuch that 
zeO~ I<~.]<~N I ~ k < ~ m  

H~ ) i(z) n z(Sk) n Int(S/) :~ ~ } 

Corollary 2. If A/KN> 1, then the number of ergodic, absolutely 
continuous z-invariant measures is at most equal to the number of crossing 
points, #I$. 

Proof. The same as that of Theorem 4. I 

Remark. Since A > tr u, it is enough to assume aNKN < 1. 

Remark. In the proofs of Theorem 4 and Corollary 2, we only used 
the fact that the elements of the partition g~ are rectangles and that the 
z-image of a rectangle is again a rectangle (with faces parallel to the 
coordinate hyperplanes.) With this in mind we can generalize Theorem 4 
even further. 

Definition 5. Let V be any open convex subset of S. We define a 
number CN as follows: 

C u = m a x  max max {number of Si such that Vc~T(Sk)nInt(Si )v~}  
V l < ~ j < ~ N l ~ k < ~ m  
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Corollary 3. Assume that the elements of ~ are convex and the 
transformation z maps convex sets into convex sets. If A/Cu > 1, then the 
number of ergodic, absolutely continuous z-invariant measures is at most 
equal to the number of crossing points, # ~ .  

Proof. The same as that of Theorem 4. | 

Note that S itself does not have to be convex, but since each of the 
elements of ~' is convex, the inner boundaries of these elements must be 
straight lines. 

D e f i n i t i o n  6. The crossing points c~, c 2 e ~  belong to the same 
dependent class if, for any e > 0, 

~(z*(B(c,, ~)) c~ z~(B(c2, ~))) > 0 

where k, l >/0. 

Coro l l a ry  4. Under the assumptions of Theorem 4, Corollary 2, or 
Corollary 3, the number of ergodic, absolutely continuous r-invariant 
measures is at most equal to the minimal number of dependent classes into 
which the crossing points can be divided. 

Proof. Let c~, c2 be in the samc dependent class. We can assume that 
there are ergodic acim's #j,  #2 such that c ~ s u p p  /u~ w.r.t. 2 and 
c2 ~ supp #2 w.r.t. 2. (Otherwise, at least one of these points is unimportant 
for the estimate of the number of ergodic acim's given in Theorem 4.). We 
can choose t: > 0 to satisfy 

B(cl, ~:)csupppl ,  2-a.e. 

and 
B(c2, e)c supp/~2, 2-a.e. 

The dependence of c~ and ez implies 

2(zk(supp/U,) C~ Zt(supp/~Z)) > 0 

for some k, l >t 0, so /~  = #2- II 

Below we give another method of estimating the number of ergodic 
acim's. The result may be applied in a general situation, but does not give 
an explicit bound on the number of ergodic acim's. 

Let O , , ( ~ ) = U ~ 0 ( ~  "(Si)), n = 0 ,  1 ..... and let P*=U, ,>0  Ui_-'~ 
&(z"(S~)) be the union of all the boundaries of the forward images of 
elements of the defining partition. 
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Theorem 5. Let z: S ~  S satisfy the conclusions of Theorem l, 
where f is the density of an ergodic measure/~. Let A be any set such that 
U,~o1" "(A) is dense in S a n d  A n P * = ~ .  Then there exists an aEA 
such that a e supp(f)  (w.r.t. 2) and the number of ergodic acim's is at most 
the cardinality of A. 

Remark. Theorem 4 and Corollary 2 state that the preimages of 
crossing points are dense in S. 

ProoL By Theorem 2, there exists an open set B such that 
B = s u p p ( f )  2-a.e. Since U,,~oz "(A) is dense in S, there exists an aEA 
and a smallest integer k such that ~ k(a)eB. Since aCP*,  
T-k(a)r176 " ' u O k  t(Y/'), and thus there exists &>0 
such that B(z k ( a ) , 6 ) c B  and 1"~,~ ~ . ,~  is a diffeor~orphism. Thus 
rk(B(r k(a), &) is an open neighborhood of a and rk(B(z k(a,k 6))~_ 
supp(f) 2-a.e., i.e., aesupp(.f)  (w.r.t. 2). Since the supports of different 
ergodic acim's are disjoint 2-a.e., the last conclusion of the theorem 
follows. II 

Remarks. (I) Given that the support of the density f of an acim is 
an open set 2-a.e., does this shed any light on whether f is bounded above 
and/or below on its support? 

(2) Random higher-dimensional point transformations can be 
treated in a way that is analogous to ref. 21. For example, we can show 
that the minimum of all the upper bounds for the number of ergodic acim's 
for the component transformations is an upper bound for the number of 
ergodic acim's for the random map. 

3. EXAMPLES OF JABLONSKI TRANSFORMATIONS 

(i) Let S =  [ - 2 ,  2] • [ - 3 ,  3] and ~ =  {SI, $2, $3, $4}, where S, is 
the intersection of S with the ith quadrant of the plane (Fig. 1). Define 
r~=~ls, by ( x , y ) ~ ( - 4 / 3 y + 2 , 3 / 2 x ) ,  i.e., ~ maps S~ linearly onto 
$1 uS2.  Let r2 map $2 onto S~uSz in the same way, and let 13, ~4 
map $3 and $4, respectively, onto $3 u $4 in the same manner. Then 
A = K2 = 2. It is obvious that 1" admits two ergodic acim's. This shows that 
the condition A/Ks  > 1 is necessary in Corollary 2 and also shows that in 
general the number of crossing points #~s is not a bound for the number 
of ergodic acim's. 

(ii) Let S =  [ - 1 ,  1] x [ - 1 ,  1] and ~ =  {$1, $2, $3, $4}, where S~is 
the intersection of S with the ith quadrant of the plane. We define zi = rlsl 
by 

Ti(x, y) = (ax - sgn(x) b, ay - sgn(y) b) 
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If ! < a < 2 and (a - 1 ) < b < 1, then ~ is a piecewise expanding Jabtonski 
transformation and z ( S ) c  S. For values in small intervals around a = 1.18 
and b = 0.85, using the computer we obtained strong evidence ~2~ that �9 has 
four ergodic acim's. The computer images of the supports of these measures 
are shown on Figs. 2-5. This gives evidence that # ~ -  1 (which might be 
a resonable generalization of the one-dimensional result) is not, in general, 
a bound for number of acim's. 

(iii) In ref. 16, we model an N-site cellular automaton by an N-dimen- 
sional point transformation. Let L be a lattice of cells having arbitrary 
shape and dimension~ The values of the N cells are described by N real 
variables (x t  ..... xN)  t i  N, I =  I-0, 1 ]. The evolution of values of the N-cell 
system is described by the point transformation z. To define z, we consider 
a partition of I N into 2 N subsets: 

1ill2... iN =l i l  x 1i2 x . . .  x liA , 

where each Ii is one of the two intervals which partition L namely E0, 1/2) 
or [1/2, 1]. To define 3, it suffices to define the ith component r ~;~. Fix 
N - 1  indices: j t  ..... Ji i ,Ji+~,Ji+2 ..... JN, each taking a value in the set 

(0,3) 

[ -2,  O) 

S 2 S 1 

[0,0]  

S 3 

(2,0) 

S 4 

(0, -3) 

Fig. 1 



7 2 2  G 6 r a  et aL 

i i  a 

m I ii m 

I I  
i 

i i 

II 
BI 

a = 1 . 1 8 0 0 8  

b = . 8 5 0 0 8  

x -- , LOOM 

: .28006 

number Of | t e r , m t | o ~ :  
2 H a  

Fig, 2 

{0, 1 }, where 0 represents the interval [0, 1/2) and 1 the interval [1/2, 1 ]. 
On the set 

l / I x I h x  . "  x l j ,  , x [ O , l ] x l i , ~ , X l y , ~ , X  ...  X/m 

T (i} depends only on xi and for any fixed 
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i t  
gl 

IN 
HI 

all am 

n I I  

a m 

i 
lib 

a = I .  10000 

5 = ,8soeo 

x -. . 2 8 0 0  

9 = . 3 0 0 0 0  

t imber of ] tera~|ofls:  
2 8 6 6  

Fig. 3 



N u m b e r  o f  I n v a r i a n t  M e a s u r e s  723 

n a B  

n m 

m"m 

[ I  I [ 

_IN 
i n 

a = 1.18866 

b = ,85888 

x = .18888 

9 = ,46888 

number of i tera t ions:  
26096 

Fig. 4 

is a one-dimensional, piecewise smooth, expanding transformation, as 
shown in Fig. 6. 

In order to use the bound of Corollary 2, we need A > 2 N ~. Since 
A > ~r ,v, we require the transformation to satisfy a <  2~/~r Since there is 
only one crossing point, z has a unique acim. 

n i 
mum 

m m 
H i  

U i 

NI m 

z = 1. 18800 

b = .85906 

x : .19896 

9 =' ,50090 

number o~ i t e ra t i ons :  
zeeee 

nlUn 

Fig. 5 



T(1) 

.5 

0 .5 

724 Gbra et  aL 

) 

I xi 

Fig. 6 

4. EXAMPLE OF A GENERAL T R A N S F O R M A T I O N  

In this section we will construct two-dimensional piecewise expanding 
C 2 transformations on a fixed finite partition, but which have an arbitrarily 
large number of ergodic, absolutely continuous invariant measures. 

Let S be a bounded closed region in R 2 with subregions $1, $2 ...... ~,,. 
Let Sj and $2 share a boundary segment which is a line L (Fig. 7). Let 

Fig. 7 
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M =  2k + 1 be an arbitrary odd positive integer. Let l be the length of L 
and let us mark off points p; at distances il/(M + 1 ), 1 <~ i <~ M, from an 
endpoint of L. We construct a line segment centered at p; (in L) of length 

1 1 

6 < ~ M + l p  

where p 1> 3 wilt be chosen later. We now construct isosceles right triangles 
TI j~, 1 ~ i ~ M , j =  1, 2, of sides 6, 3, 21/2& as shown in Fig. 8. 

To define ~1 = Zjs~, we proceed as follows: 

Step l: Reflect $1 about the perpendicular line to L at p~ + ~ (Fig. 9). 
This maps the base of _;T ~ to the base of T~)+~ ; and flips the triangles. 
Note that for i =  k + 1 the base maps to itself, i.e., is invariant. 

Step 2: Let C; be vertices of the reflected T; at the right angle. 
Perform a homothetic'dilation by x/~ at C; followed by a 45 ~ rotation as 
shown in Fig. 10. Note that C;B'~ is the image of the base of triangle 
T~4-, ;" 

Step 3." Extend z, defined above on triangles TI ~ to a neighborhood 
of L in S,.  That is, we define T~ between the two adjacent triangles so that 
rj is expanding. This can be done as suggested in Fig. 11, provided the 
spacing between adjacent triangles is sufficiently large in relation Io 6, i.e., 

_(1) ~I ''" 

I 

I 

I 

I 

I 
f 

I 
l 

Fig. 8 

S 2 

TCI) (.) _(I) 
k+l T~ ,2 "'" 12k+l 

S 1 
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Ck+ 1 

fllp 

of T (11 
k§ 

I 

I 

IPk+ 1 

I 

t 
Fig. 9 

T(1) 
k§ 

provided & is sufficiently small. Choose p accordingly. This defines zj within 
a distance 6 of L. 

Step 4: Extend rt to the remainder of S, so that it is expanding and 
C 2 on S,. 

By symmetry, we may repeat the same construction for $2, i.e., repeat 
the construction for S, symmetrically with respect to L to get z2 within a 
distance & of L, and extend as in Step 4. 

Ci Pi 

A I 

B i 

C i 

Fig. 10 
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zl"T(1) ) t 1+1 
% 

% p/ 

t 
t 

~t TI(T~ I) ) 

/ 
T I ( l x l x  E S I, p(x ,L )  < ~5 }1 

Fig. 11 

Let 

E~ ~ ~2) ~ u T ~ + ~  ~, l < ~ i ~ M  = Ti u T i u T(~)+ i 

Define z on the rest of S so that 

M 

T(S/) ~ U Ei = ~ for j > 2 
i = 1  

Then z ( E i ) = E i = z  t(Ei), for 1 <~i<~M, so each Ej is an invariant set of 
positive Lebesgue measure, and hence supports an ergodic, absolutely con- 
tinuous invariant measure. Since there are k + l  distinct E~ and k is 
arbitrary, we can have an arbitrarily large number of ergodic, absolutely 
continuous invariant measures. 
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